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Chapter 1

Structure of the Solver Input File

1.1 Introduction

Solving partial differential equation (PDE) models witletsolver of EImer requires that a precise description
of the problemis given using the so-called solver input biliefly referred to as the sif file. This file contains
user-prepared input data which specify the location of nfigshand control the selection of physical models,
material parameters, boundary conditions, initial cand#, stopping tolerances for iterative solvers, etc. In
this chapter, the general structure of the file is describd.explain how the input data is organized into
different sections and describe the general keyword symfaigh is used in these sections to define the
values of various model parameters and to control the swiytiocedures.

In the case of simple problem setups the solver input file meawitten automatically by the prepro-
cessor of Elmer software, so that knowing the solver inpatfirmat may be unnecessary. Creating a more
complicated setup, or using keywords introduced by the, ismvever, requires the knowledge of the file
format and keyword syntax.

In the following the general structure of the input file isfiiteistrated by using simple examples, without
trying to explain all possibilities in an exhaustive mann@éfe then describe the keyword syntax in more
detail, showing also how model parameters whose valuesdepesolution fields can be created. The later
chapters of this manual, and ElImer Models Manual, which$eswon describing the PDE models Elmer can
handle, provide more detailed material on specific issumeETutorials also gives complete examples of
solver input files.

1.2 The sections of solver input file

The material of the solver input file is organized into diffiet sections. Each section is generally started
with a row containing the name of the section, followed by mbar of keyword commands, and ended with
a row containing the wor&nd. The names for starting new sections are

e Header
e Simulation

Constants

Body n

Material n

Body Force n

Equation n
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1. Structure of the Solver Input File 7

e Solver n
e Boundary Condition n
e Initial Condition n

Heren associated with the section name represents an integeifieleneeded for distinguishing between
sections of the same type. A basic keyword command includadection is nothing more than a statement
which sets the value of a keyword with an equal sign.

In the following we describe how the sections are basicaligrayed without trying to explain all possi-
bilities in an exhaustive manner. The later chapters ofrtranual and Elmer Models Manual provide more
detailed material on specific issues. Elmer Tutorials algesgcomplete examples of solver input files.

Header section

The location of mesh files is usually given in the header eactDften this is also the only declaration given
in the header section. If the ElImer mesh files (see Appendiar@)located in the directory ./mymesh, the
header section may simply be

Header
Mesh DB "." "mymesh"
End

Note that separate equations can nevertheless be distretsng different meshes if the location of mesh
files is given in the solver section described below.

Simulation section

The simulation section is used for giving general informatihat is not specific to a particular PDE model
involved in the simulation. This information describes ttwordinate system used, indicates whether the
problem is stationary or evolutionary, defines the file nafoesutputting, etc. Without trying to describe
many possibilities and the details of commands, we only tiiedollowing simple example:

Simulation
Coordinate System = "Cartesian 1D"
Coordinate Mapping(3) = 1 2 3
Simulation Type = Steady State
Steady State Max lterations = 1
Output Intervals(1) = 1
Post File = "case.ep”
Output File = "case.dat"

End

Constants section

The constants section is used for defining certain physaatants. For example the gravity vector and the
Stefan-Boltzmann constant may be defined using the commands

Constants
Gravity(4) = 0 -1 0 9.82
Stefan Boltzmann = 5.67e-08
End

If the constants are not actually needed in the simulathig gection can also be left empty.
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1. Structure of the Solver Input File 8

Body, material, body force and initial condition sections

The Elmer mesh files contain information on how the compaiteti region is divided into parts referred
to as bodies. A body section associates each body with ariequset, material properties, body forces,
and initial conditions by referring to definitions given irspecified equation section, material section, body
force section, and initial condition section. To manage dafds, the different sections of the same type
are distinguished by integer identifiers that are parts efstaction names. Note that the integer in the body
section name is an identifier for the body itself.

For example, one may define

Body 1
Material = 1
Body Force = 1
Equation = 1
Initial Condition = 2
End

Material properties, body forces, an equation set, andalnionditions are then defined in the material
section

Material 1

End

the body force section

Body Force 1

End

the equation section

Equation 1

End

and the initial condition section

Initial Condition 2

End

What material properties and body forces need to be spediépdnds on the mathematical models involved
in the simulation, and the initial condition section useddwing initial values is only relevant in the so-
lution of evolutionary problems. We here omit the discussid these very model-dependent issues; after
reading this introductory chapter the reader should be tallederstand the related documentation given in
Elmer Models Manual, which focuses on describing the diffitimathematical models, while the contents
of equation section will be described next.

Equation and solver sections

Equation section provides us a way to associate each botlyanset of equation solvers. That is, if the
set defined consists of more than one equation solver, dgueyaical phenomena may be considered to
occur simultaneously over the same region of space. Indalidquation solvers are actually defined in
solver sections, the contents of an equation section beisigdlly a list of integer identifiers for finding the
solver sections that define the solvers. The keyword commagivén in the solver sections then control the
selection of physical models, linearization proceduresaflinear models, the selection of solution methods
for resulting linear equations, convergence tolerandes, e
For example, if only two solvers are needed, one may simpiyéa list of two solver identifiers
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1. Structure of the Solver Input File 9

Equation 1
Active Solvers(2) = 1 2
End

Then the solver definitions are read from the solver sections
Solver 1
End
and
Solver 2
End
Finally, we give an example of solver definitions, withowtinig to explain the commands at this point;

Solver 1

Equation = "Poisson"

Variable = "Potential"

Variable DOFs = 1

Procedure = "Poisson" "PoissonSolver"

Linear System Solver = "Direct"

Steady State Convergence Tolerance = 1le-06
End

Boundary condition section

Boundary condition sections define the boundary conditfonshe different equations. The Elmer mesh
files contain information on how the boundaries of the bodiesdivided into parts distinguished by their
own boundary numbers. The keywofadrget Boundaries is used to list the boundary numbers that
form the domain for imposing the boundary condition. Forrepée the declaration

Boundary Condition 1
Target Boundaries(2) = 1 2

End
means that the boundary condition definitions that followarn the two parts having the boundary numbers
land 2.

Text outside sections

We finally note that some commands, such as comments staitedh& symbol ! and MATC expres-
sions described below, may also be placed outside sectiomtibams. An exception of this type is also the
command

Check Keywords "Warn"

usually placed in the beginning of the input file. When thisnoeand is given, the solver outputs warning
messages if the input file contains keywords that are nadign the file of known keywords. If new
keywords are introduced, misleading warning messages eavdided by adding the new keywords to the
keyword fileSOLVER.KEYWORD®Bcated in the directory of the shared library files of El®@elver.
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1. Structure of the Solver Input File 10

1.3 Keyword syntax

As already illustrated, a basic keyword command used in theesinput file is a statement which sets the
value of a solution parameter with the equal sign. Such a canchin its full form also contains the data
type declaration; for example

Density = Real 1000.0
Valid data types generally are

o Real

Integer

Logical
e String
o File

If the keyword is listed in the keyword fiIEOLVER.KEYWORD®e data type declaration may be omitted.
Therefore, in the case of our example, we may also define

Density = 1000.0

The value of a keyword may also be an array of elements of Bpédaata type, with the array size
definition associated with the keyword. We recall our pregi@xamples of the equation and boundary
condition sections, where we defined two lists of integensgithe commands

Active Solvers(2) = 1 2

and

Target Boundaries(2) = 1 2

Two-dimensional arrays are also possible and may be defmed a

My Parameter Array(3,3) = Real 1 2 3 \
456 \
789

Defining parameters depending on field variables

Most solver parameters may depend on time, or on the fieldablas defined in the current simulation
run. Such dependencies can generally be created by meaabudért data, MATC functions, or Fortran
functions. MATC has the benefit of being an interpreted laug making an additional compilation step
with a compiler unnecessary.

Simple interpolating functions can be created by meanshofiéa data. The following example defines
the parametebensity the value of which depends on the variabkmperature

Density = Variable Temperature
Real
0 900
273 1000
300 1020
400 1000
End
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This means that the value @fensity is 900 whenTemperature is 0, and the following lines are
interpreted similarly. Elmer then uses linear interpalatio approximate the parameter for argument values
not given in the table. If the value of the independent vdeab outside the data set, the first or the last
interpolating function which can be created from the tatedavalues is used to extrapolate the value of the
parameter.

If the field variable has several independent componenth, asithe components of displacement vector,
the independent components may be used as arguments inteifudefinition. For example, if a three-
component field variable is defined in a solver section udiegcommands

Variable = "Displ"
Variable DOFs = 3

then the solver of EImer knows, in addition to the three-comgnt vectoDispl , three scalar fieldBispl
1, Displ 2 andDispl 3 . These scalar fields may be used as independent variablasamepter defini-
tions, and used in the definitions of initial and boundaryditions, etc.

More complicated functions can be defined using MATC langudgere the basic usage of MATC in
connection with the solver input file is illustrated; for atiditional documentation, see a separate manual
for MATC. For example, one may define

Density = Variable Temperature
MATC "1000* (1-1.0e-4 =« (tx-273))"

This means that the parameensity depends on the value @emperature as

p = po(l —B(T —Top)), (1.1)

with pg = 1000, 3 = 10~* andT, = 273. Note that the value of the independent variable is knowtx as
in the MATC expression.

If the independent variable has more than one componenvatti@bletx will contain all the compo-
nents in valuesx(0) ,tx(1) ,...tx(n-1) , wheren is the number of the components of the independent
variable. A MATC expression may also take several scalanragnts; one may define, for example,

My Parameter = Variable Time, Displ 1
Real MATC ".."

The values of the scalar field$me andDispl 1 can then be referred in the associated MATC expression
by the name#x(0) andtx(1l) , respectively.

In addition to using MATC functions, Fortran 90 functionsyraso be used to create parameter defini-
tions, etc. In the same manner as MATC functions are used, ayed&fine

Density = Variable Temperature
Procedure "“filename" "proc"

In this case the file "filename" should contain a shareabléUsix) or .dIl (Windows) code for the user
function whose name is "proc". The call interface for thetFeor function is as follows

FUNCTION proc( Model, n, T ) RESULT(dens)
USE DefUtils)
IMPLICIT None
TYPE(Model_t) :: Model
INTEGER :: n
REAL(KIND=dp) :: T, dens

dens = 1000 * (1-1.0d-4(T-273.0d0))
END FUNCTION proc

The Model structure contains pointers to all informatiomatithe model, and may be used to obtain field
variable values, node coordinates, etc. The argument rimtlex of the node to be processed, and T is the
value of the independent variable at the node. The functionlsl finally return the value of the dependent
variable.

The independent variable can also be composed of seveegdémdient components. We may thus define
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1. Structure of the Solver Input File 12

Density = Variable Coordinate
Procedure "filename" "proc"

Now the argument T in the Fortran function interface showddlyeal array of three values, which give the
X,y and z coordinates of the current node.

Parameterized keyword commands

The solver input file also offers possibilities for creatipgrameterized commands that utilize MATC. In the
solver input file an expression following the symbol $ is gatig interpreted to be in MATC language. If
the solver input file contains the lines

$solvertype = “lterative"
$tol = 1.0e-6

then one may define, e.g.,

Solver 1

Linear System Solver = $solvertype

Linear System Convergence Tolerance = $tol
En.OII.
Solver 2
Linear System Solver = $solvertype
Linear System Convergence Tolerance = $100 * tol

End
Alternative keyword syntax

There are some alternative keyword syntaxed that may sorastbe needed. The size of a integer or real
number may be given in parenthesis with the keyword, but wiio the Size declaration. Therefore the
following to are exactly the same

Timestep Intervals(3) = 1 10 100
Timestep Intervals = Size 3; 1 10 100

This feature is usefull when giving vectors and matriceslmé&GUI since there the keyword body is fixed
and cannot include any size declaration. Note that in admweémicolon is used as an alternative character
for newline.

Another convention is to use two colons to make in-lined digiits in the sif files. The following to
expressions are equal

Body Force 1
Heat Source = 1.0
End

and

Body Force 1 :: Heat Source = 1.0
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1. Structure of the Solver Input File 13

1.4 Running several sequences

Execution within command file

When reading the strinBUNin the command file the solver stops the reading and perfdnmsdmputa-
tion with the instructions so far obtained. After a succésfecution the solver continues to interpret the
command file. Using this functionality it is therefore pdisito create scripts where some parameter value
is changed and the problem is recomputed. For example, gdiinsame sequence to the end of.gie

file could be used to test the solution with different linealver

RUN
Solver 1::Linear System lIterative Method = BiCgstabl
RUN

It should be noted that not quite all features support thixedure. For example, some preconditioners
create static structures that will not be recreated.
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Chapter 2

Restart from existing solutions

Often, the user wants to restart a run. This may be eitherlgitopcontinue a - to what reason ever -
interrupted simulation, but also to read in values needieéein initial conditions or in boundary conditions.

2.1 Restartfile

Any output file given by the syntax
Output File String

can be used as a restart point for a new simulation. The liimitas, that the mesh, the previous case has
been run on is identical to the one the new run is performed lanparallel runs, additionally, also the
partitions of the mesh have to coincide.

The syntax for restarting then is given in tBamulation  section by declaring the restart file name as
well as theRestart Position

Simulation
Restart File = "previousrun.result"
Restart Position = 101

End

This would restart the current simulation from the timeétén level 101 of the previously stored result file
previousrun.result
Upon running the new simulation, a similar message in thedstad output of EImer should be seen:

LoadRestartFile:

LoadRestartFile: --------memmmmmmmmeeeeeeeee e
LoadRestartFile: Reading data from file: previousrun.res ult
LoadRestartFile: ASCII 1

LoadRestartFile:

LoadRestartFile: Restart time = 100.0

LoadRestartFile: All done

LoadRestartFile: --------memmmmmmemeeeeeeeeeee e
LoadRestartFile:

If the amount of stored time/iteration levels a priori is kabwn, the user can insert the syntax
Restart Position = 0

in order to make sure to reload the last stored time-/iteratével.

Result files from steady state simulations often contairtipialiteration steps (with only the last con-
taining the converged solution). Nevertheless, thesamtsts of solutions are - if reloaded - interpreted as
different time-levels. In this case the user might want tfirgea time being set for the restart, especially if
continuing with transient runs. This is done with the keyavor
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2. Restart from existing solutions 15

Restart Time Real

in order to manually set the time for the zeroth time-leveth& new simulation.

2.2 Initialization of dependent variables

Initialization of variables and their boundary conditiomg default is done before reading in of previous
results. That has two main implications:

1. Values set in the sectidmitial Condition are overwritten by corresponding values of the
variable being loaded afterwards from the restart file

2. On other variables dependent values of variables withieitial- or boundary conditions are by default
not initiated with those values from the restart file

The latter can be influenced with two keyworéRestart Before Initial Conditions (default
False ) andlnitialize Dirichlet Condition (defaultTrue ).
Restart Before Initial Conditions = Logical True would first load the variables

from the restart file and then apply initial conditions to $hovariables that have not been set by the ear-
lier solution. This is necessary if one of the initial comalits is dependent on the earlier solution. By

default, first the initial conditions from the solver inpuefare set and thereafter the restart files (if existing)
is read.

Initialize Dirichlet Condition by default is set to true, which means that Dirichlet Con-
ditions are set before the simulation and thus also befageptrticular solver for that variable is being
executed. If now a boundary condition for one variable isedefent on the value of another, the first time
Dirichlet condition is set from the initial value of variadd - either set or read in from a restart file. If this is
not wanted, the user can switttitialize Dirichlet Condition = False which will set the
Dirichlet condition on the fly, during the execution of thethe variable attached solver.
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Chapter 3

Solution methods for linear systems

3.1 Introduction

Discretization and linearization of a system of partiafeliéntial equations generally leads to solving linear
systems
Az = b, (3.1)

where A andb are of orders: x n andn x 1, respectively. A specific feature of the coefficient matsix
resulting from the finite element discretization is thathetrix is sparse, i.e. only a few of the matrix entries
in each row differ from zero. In many applications the system also have a very large orderso that the
chief part of the computation time in performing the simidatis typically spent by solvers for the linear
systems.

Solution methods for linear systems fall into two large gatées: direct methods and iterative methods.
Direct methods determine the solution of the linear systeat#y up to a machine precision. They perform
in a robust manner leading to the solution after a predetethnumber of floating-point operations. Never-
theless, the drawback of direct methods is that they areresiyein computation time and computer memory
requirements and therefore cannot be applied to the salofitinear systems of very large order. The ef-
ficient solution of large systems requires generally theafdeerative methods which work by generating
sequences of improving approximate solutions.

ElmerSolver provides access to both direct and iterativehods. The iterative methods available fall
into two main categories: preconditioned Krylov subspaeghmods and multilevel methods. Iteration meth-
ods that combine the ideas of these two approaches may alsonisgucted. Such methods may be very
efficient leading to a solution after a nearly optimal numtfesperation counts.

The development of efficient solution methods for lineartayss is still an active area of research, the
amount of literature on the topic being nowadays vast. Thedfithe following discussion is to provide
the user the basic knowledge of the solution methods availatEImerSolver. The detailed description of
methods is omitted. For a more comprehensive treatmengetiter is referred to references mentioned.

3.2 Direct methods

A linear system may be solved in a robust way by using diredhods. There are two different options
for direct methods in ElmerSolver. The default method zeii the well-known LAPACK collection of
subroutines for band matrices. In practice, this solutiathad can only be used for the solution of small
linear systems as the operation count for this method isadmor.

The other direct solver employs the Umfpack routines toesjvarse linear systemy [ Umfpack uses
the Unsymmetric MultiFrontal method. In practice it may Ibe tmost efficient method for solving 2D
problems as long as there is enough memory available.

It should be noted that the success of the direct solversispeery much on the bandwidth of the sparse
matrix. In 3D these routines therefore usually fail miséyab
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3. Solution methods for linear systems 17

Elmer may be also compiled withllumps SuperLU , andPardiso . The licensing scheme of these
softwares do not allow the distribution of precompiled liaa but every user may themselves compile a
version that includes these solvers. Many times the besaitinolver for a particular problem may be found
among these.

3.3 Preconditioned iteration methods

ElmerSolver contains a set of Krylov subspace methods ®it#rative solution of linear systems. These
methods may be applied to the solution large linear systernspid convergence generally requires the use
of preconditioning.

3.3.1 Krylov subspace methods

The Krylov subspace methods available in ElImerSolver are

e Conjugate Gradient (CG)

Conjugate Gradient Squared (CGS)

Biconjugate Gradient Stabilized (BiCGStab)
BiCGStab()

Transpose-Free Quasi-Minimal Residual (TFQMR)

Generalized Minimal Residual (GMRES)
e Generalized Conjugate Residual (GCR)

Both real and complex systems can be solved using thesathlgsr For the detailed description of some
of these methods se8][and [4].

A definite answer to the question of what is the best iterati@ihod for a particular case cannot be
given. In the following only some remarks on the applicaypitif the methods are made.

The CG method is an ideal solution algorithm for cases wharebefficient matrix4 is symmetric and
positive definite. The other methods may also be appliedsescaherel is non-symmetric. It is noted that
the convergence of the CGS method may be irregular. The Bi@its&d TFQMR methods are expected
to give smoother convergence. In cases where BiCGStab adegnk well it may be advantageous to use
the BiCGStah() method, with¢ > 2 a parameter. Faster convergence in terms of iteration saquay be
expected for increasing values of the paramététowever, since more work is required to obtain the iterate
as/ increases, optimal performance in terms of computatiommakwnay be realized for quite a small value
of ¢. Starting with the valué = 2 is recommended.

The GMRES and GCR methods generate gradually improvingtésrthat satisfy an optimality condi-
tion. The optimality may however come with a significant cgiste the computational work and computer
memory requirements of these methods increase as the nwhiberations grows. In practice these meth-
ods may be restarted after solution updates have been performed in order to avoid tbreasing work
and storage requirements. The resulting methods are eeféoras the GMRE%{) and GCR{n) meth-
ods. Here the choice of: has to be controlled by the user. It should be noted that theezgence of the
restarted algorithms may be considerably slower than thatlloversions. Unfortunately, general guidelines
for determining a reasonable value farcannot be given as this value is case-dependent.

The GCR method suits well to situations where the linearesols preconditioned by applying some
other iterative method such as a multigrid solver. When swedted iterations are employed, using the GCR
method as a linear solver is recommended.
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3.3.2 Preconditioning strategies

The performance of iteration methods depends greatly osghetrum of the coefficient matrit. The rate
at which an iteration method converges can often be imprbyeadansforming the original system into an
equivalent one that has more favorable spectral propefiigs transformation is called preconditioning and
a matrix which determines the transformation is called a@nelitioner.

In ElImerSolver preconditioning is done by transformidglj into the system

AM ™'z =0, (3.2)

where the preconditioneY/ is an approximation tod andz is related to the solutiom by z = Mz. In
practice, the explicit construction of the inver®&~! is not needed, since only a subroutine that for a given
v returns a solutiom to the system

Mu = (3.3)

is required.

ElmerSolver provides several preconditioning strategiesese include Jacobi preconditioning and in-
complete factorization preconditioners. The preconditig step 8.3) may even be defined in terms of some
iteration method for the syster8.Q) with M = A. This possibility is considered in Secti@mw.3below.

The Jacobi preconditioner is simply based on takifigo be the diagonal ofl. More sophisticated pre-
conditioners may be created by computing incomplete Lbféxations ofA. The resulting preconditioners
are referred to as the ILU preconditioners. This approaghgythe preconditioner matri/ in the form
M = LU whereL andU are lower and upper triangular with certain elements thigean the factorization
process ignored.

There are several ways to choose a set of matrix positiorisatieaallowed to be filled with nonzero
elements. ILU preconditioners of fill levéV referred to as the ILU(N) preconditioners are built so that
ILU(0) accepts nonzero elements in the positions in whidhas nonzero elements. ILU(1) allows nonzero
elements in the positions that are filled if the first step oti€dan elimination is performed fot. ILU(2)
accepts fill in positions that are needed if the next step afsSian elimination is performed with ILU(1)
factorization, etc.

Another strategy is based on numerical tolerances. Thétiegpreconditioneris referredto as the ILUT
preconditioner. In the creation of this preconditioner €&aan elimination is performed so that elements of
a given row of the LU factorization are obtained but only edents whose absolute value (scaled by the norm
of all values of the row) is over a given threshold value areepted in the preconditioner matrix.

Obviously, the additional computation time that is spemtrgating the preconditioner matrix and solving
systems of the type3(3) should be compensated by faster convergence. FindingtmalpLU precondi-
tioner for a particular case may require the use of trial amdre Start with ILU(0) and try to increase the
fill level N. As N increases, more and more elements in the incompleteakttofization of the coefficient
matrix are computed, so the preconditioner should in ppiedde better and the number of iterations needed
to obtain a solution should decrease. At the same time theamemsage grows rapidly and so does the time
spent in building the preconditioner matrix and in applythg preconditioner during iterations. The same
applies to the ILUT preconditioner with decreasing thrddhvalue.

3.4 Multilevel methods

A class of iterative methods referred to as multilevel mdthprovides an efficient way to solve large linear
systems. For certain class of problems they perform negtiyrally, the operation count needed to obtain a
solution being nearly of order. Two different multilevel-method approaches are avadablElmerSolver,
namely the geometric multigrid (GMG) and algebraic muldgAMG).

3.4.1 Geometric multigrid

Given a meshr; for the finite element discretization of problem the geomatnultigrid method utilizes
a set of coarser meshfg, k = 2, ..., N, to solve the linear system arising from the discretizati@Qme
of the fundamental ideas underlying the method is based @iid#a of coarse grid correction. That is, a
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coarser grid is utilized to obtain an approximation to theem the current approximate solution of the
linear system. The recursive application of this strateggdb us to multigrid methods.

To utilize different meshes multigrid methods require tlewelopment of methods for transferring vec-
tors between fine and coarse meshes. Projection operatoused to transfer vectors from a fine m&gh
to a coarse mesf#,; and will be denoted by, ™", while interpolation operatotg’, , transfer vectors from
a coarse mesh to a fine mesh.

The multigrid method is defined by the following recursivgaithm: GivenA, b and an initial guessg
for the solution of the systemxz = b seti = 1 and do the following steps:

1. If i = N, then solve the systemz = b by using the direct method and return.

2. Do pre-smoothing by applying some iterative algorithmaaiven number of times to obtain a new
approximate solutiof.

3. Perform coarse grid correction by starting a new appbeedf this algorithm withA = If“AI}H,
b= I (Ay —b),i =i+ 1 and the initial guess = 0.

4. Compute a new approximate solution by setting v -+ Iz‘i+1€

5. Do post-smoothing by applying some iterative algoritlome given number of times to obtain a new
approximate solutio.

6. If the solution has not yet converged, go to step 2.

In ElmerSolver one may choose the Jacobi, CG or BiCGStakrittignas the method for smoothing itera-
tions.

The full success of multigrid methods is based on the faderabmbination of the properties of ba-
sic iteration methods and methods for transferring vedietsveen meshes. The smoothing iterations give
rapid convergence for oscillatory solution componentdevboarse grid correction entails an efficient solu-
tion method for smooth solution components. For a comprgkenntroduction to the geometric multigrid
method the reader is referred 9]

3.4.2 Algebraic multigrid

In many cases the geometric multigrid may not be applied imxave do not have the luxury of having
a set of appropriate hierarchical meshes. The alternagitlea algebraic multigrid (AMG) method which
uses only the matrixd to construct the projectors and the coarse level equatidMG is best suited for
symmetric and positive semidefinite problems. For otheesypf problems the standard algorithm may fail.
For more information on AMG see referenéd.|

The AMG method has two main phases. The set-up phase indluelescursive selection of the coarser
levels and definition of the transfer and coarse-grid opesafl he solution phase uses the resulting compo-
nents to perform a normal multigrid cycling until a desiredaracy is reached. The solution phase is similar
to that of the GMG.

Note that the AMG solvers in ElImerSolver are not fully matufdey may provide good solutions for
some problems while desperately failing for others.

Classical Ruge-Stuiben algorithm

The coarsening is performed using a standard Ruge-Stilaesearong algorithm. The possible connections
are defined by the entries in the matrlx The variable is strongly coupled to another variabjéf

a;j < —c_max|a;| OF ai; > ¢y max|akl, (3.4)

where0 < ¢_ < 1 and0 < ¢y < 1 are parameters. Typically. =~ 0.2 andc, ~ 0.5. Once the negative
(P~) and positive PT) strong couplings have been determined the variables widediinto coarse() and
fine (F") variables using the standard coarsening scheme.
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The interpolation matrix may be constructed using @&-splitting and the strong couplings of the
matrix. The interpolation of coarse nodes is simple as tleeyain unchanged. The interpolation of fine
nodes starts from the fact the smooth ewranust roughly satisfy the conditiate = 0 or

ai;:€; + Z ajje; = 0. (35)
J#i
By manipulation
ai;e; + o Z aije; + B; Z aij€e; = 0, (3.6)
jecnp; jecnp;t
where 5 5
Y ot Qg
o = =% Y and 8 = _aERT Y (3.7)

ZJ’GCQPI i Z,jeCmP;r aij

The interpolation thus becomes

. _a.a,,/a.,’ jEP-77
l je;ﬂ o Y —Biazj/ai,  jE€ P

This is known adlirect interpolation It may be modified by using also the stroignodes in the
interpolation. This means that in formuld.p) the following elimination is made for eaghe F' N P;

€; — — Z ajkek/ajj. (3.9)

keCNP;

This is known astandard interpolationIn practice it means that the number of nodes used in thepiote
lation is increased. This may be important to the qualityhef interpolation particularly if the number of
directC-neighbors is small.

After the interpolation weights have been computed the lestatoefficients may be truncated if they
are smallj.e, w; < ¢, max |wyg|, wherec,, =~ 0.2. The other values must accordingly be increased so that
the sum of weights remains constant. The truncation is éiss@npreventing the filling of the coarse level
matrices.

Cluster multigrid

There is also an implementation of the agglomeration ortefusultigrid method. It is a variant of the
algebraic multigrid method. In this method the componengsgeouped and the coarse-level matrices are
created simply by summing up the corresponding rows andwodu In other words, the projection matrix
includes just ones and zeros.

The cluster multigrid method should be more robust for peatd where it is difficult to generate an
optimal projection matrix. However, for simple problemssitusually beaten by the standard Ruge-Stiiben
method.

3.4.3 Preconditioning by multilevel methods

Multilevel methods are iteration methods on their own beytlsan also be applied as preconditioners for
the Krylov subspace methods. This preconditioning apgraacresponds to taking/ = A in (3.3) and
performing an inaccurate solution of the resulting systsmgimultilevel methods to obtain A rather mild
stopping criterion may be used in this connection. Pred@rdng by multilevel methods may lead to very
efficient solution methods for large linear systems. It iseddhat in connection with the preconditioning by
multilevel methods using the GCR method as a linear solvesdsmmended.
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3.5 Keywords related to linear system solvers
The following keywords may be given in Solver section of tbiver input file (.sif file).

Linear System Solver String
Using this keyword the type of linear system solver is selécihis keyword may take the following
values:
e Direct
e lterative
e Multigrid

Herelterative andMultigrid refer to the Krylov and multilevel methods, respectively.

Linear System Direct Method String
If the value of theLinear System Solver keyword is set to b®irect , one may choose a band
matrix solver with the valu@anded or a sparse matrix solver with the valuenfpack , mumps
Pardiso orsuperlu ,. The defaultiBanded.

Linear System Iterative Method String
If the value of theLinear System Solver keyword is set to béerative , one should choose
a Krylov method by setting the value of this keyword to be ofthe following alternatives:
e CG
e CGS
e BiCGStab
e BiCGStabl
e TFQMR
e GMRES
e GCR

See also th#1G Smoother keyword.

Linear System GMRES Restart Integer [10]
The restart parametet for the GMRES{n) method may be given using this keyword.

Linear System GCR Restart Integer
The restart parameter for the GCR{n) method may be given using this keyword. The default option
is that restarting is not performed, i.e. the full GCR is used

BiCGstabl polynomial degree Integer
The parametef for the BiCGStab() method may be given. By default the minimal applicable galu
¢ =2is used.

Linear System Preconditioning String

A preconditioner for the Krylov methods may be declared hyirsg the value of this keyword to be
one of the following alternatives:

e None

e Diagonal

e ILUn , where the literah may take values 0,1,...,9.

o ILUT

e Multigrid

See also th#!G Preconditioning keyword.
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Linear System ILUT Tolerance Real [0.0]
This keyword is used to define the value of the numerical &wlee for the ILUT preconditioner.

Linear System Convergence Tolerance Real [0.0]
This keyword is used to define a stopping criterion for thelBwymethods. The approximate solution
is considered to be accurate enough if the iterate satisfies

Az bl _
I

wheree is the value of this keyword. See alstG Tolerance .

Linear System Max Iterations Integer [0]
This keyword is used to define the maximum number of the itamatthe Krylov methods are permit-
ted to perform. If this limit is reached and the approximatieison does not satisfy the stopping crite-
rion, ElmerSolver either continues the run using the cura@proximate solution as the solution of the
system or aborts the run depending on the valueiméar System Abort Not Converged
keyword. See alsMG Max lIterations  keyword.

Linear System Abort Not Converged Logical [True]
If the value of this keyword is set to B&ue , EImerSolver aborts the run when the maximum number
of iterations the algorithm is permitted to perform is readland the approximate solution does not
satisfy the stopping criterion. Otherwise the run will bentioued using the current approximate
solution as the solution of the system (this may lead to tiesuht later steps of computation).

Linear System Residual Output Integer [1]
By default the iterative algorithms display the value of (eealed) residual norm after each iteration
step. Giving a value > 1 for this keyword may be used to display the residual norm aftigr every
n iterations. If the value 0 is given, the residual outputisatled.

Linear System Precondition Recompute Integer [1]
By default the EImerSolver computes the preconditionemwdneew application of iterative algorithm
is started. If the value of this keyword is set to bethe preconditioner is computed only after
n successive subroutine calls for linear systems arisiogyfsame source. This may speed up the
solution procedure especially in cases where the coefficigirix does not change much between
successive subroutine calls. On the other hand if the caaffimatrix has changed significantly, the
preconditioner may not be efficient anymore.

Optimize Bandwidth Logical [True]
If the value of this keyword is set to bierue , the Cuthill-McKee bandwidth optimization scheme is
used to order the unknowns in such a way that band matriceésechandled efficiently. The bandwidth
optimization is recommended when the direct solver or inglete factorization preconditioners are
used.

The keywords beginning witMGare activated only if either theinear System Solver orLinear

System Preconditioning keyword has the valu®lultigrid . If a multigrid method is used as the
linear system solver, some keywords starting viitBmay be replaced by corresponding keywords starting
with phraseLinear System . It should be noted that in the case of a multigrid solverehare some

limitations to what values the keywords starting with thegsteLinear System may take, see below.

MG Levels Integer [1]
This keyword is used to define the number of levels for the igwidt method.

MG Equal Split Logical [False]
A hierarchy of meshes utilized by the multigrid method maygbaerated automatically by setting the
value of this keyword to b&rue . The coarsest mesh must be supplied by the user and is d&lare
the usual way in the Header section of the solver input filee @tiher meshes are obtained using an
equal division of the coarse mesh. The solution of the prabéll be sought for the finest mesh.
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MG Mesh Name File
A hierarchy of meshes utilized by the multigrid method mayshpplied by the user. A base name of
the mesh directories is declared using this keyword. Theasashmesh directories must be composed
of the base name appended with a level number such that ifathe fiame isngridmesh , the mesh
directories should have namegridmeshl , mgridmesh2 , etc. The meshes are numbered starting
from the coarsest mesh. In addition, the finest mesh must tlardd in the Header section of the

solver input file. It should be noted that th&5 Equal Split keyword must be set to bEalse
to enable the use of user-supplied meshes.

MG Max lIterations Integer [0]

If a multigrid method is used as a preconditioner for the Kwmethods, the value of this keyword
defines the maximum number of iterations the multigrid mdttsoallowed to perform to solve the
preconditioning equatior3(3). Usually one or two iterations are sufficient. If a mult@jrinethod

is the linear system solver, the use of this keyword is sintdathat of theLinear System Max
Iterations keyword.

MG Convergence Tolerance Real [0.0]

If a multigrid method is used as a preconditioner for the Kwimethods, this keyword defines the
solution accuracy for the preconditioning equati8t8{. This keyword is not usually needed if tMG
Max lIterations keyword has a small value. If a multigrid method is the linsgstem solver,

the use of this keyword is similar to that of théear System Convergence Tolerance
keyword.

MG Smoother String
This keyword defines the algorithm for pre- and post-smaghilt may take one of the following
values:
e Jacobi
e CG
e BiCGStab

If the linear system solver is a multigrid method, thimear System lIterative Method

keyword may be used instead of this keyword, but only theetlalgorithms mentioned here can be
applied.

MG Pre Smoothing Iterations Integer [0]
This keyword defines the number of pre-smoothing iterations

MG Post Smoothing Iterations Integer [0]
This keyword defines the number of post-smoothing iteration

MG Preconditioning String
This keyword declares the preconditioner for the algoriththich is used in smoothing iterations. It
may take one of the following values:

e None

e ILUn , where the literah may take values 0,1,...,9.
o ILUT

Note that this keyword is not related to using multigrid neethas a preconditioner. It is also noted
that preconditioning the smoothing algorithms does notrstework well if a multigrid method is
used as a preconditioner for Krylov methods.

MG ILUT Tolearance Real [0.0]

This keyword defines the numerical tolerance for the ILUTcpreditioner in connection with smooth-
ing iterations.
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The keywords for the algebraic multigrid solver are in a &part the same as for the geometric multigrid.
There are however some keywords that are related only to AMG.

MG Lowest Linear Solver Limit Integer
This value gives a lower limit for the set of coarse nodesradteich the recursive multilevel routine
is terminated. A proper value might be around 100.

MG Recompute Projector Logical
This flag may be used to enforce recomputation of the projexdcoh time the algebraic multigrid
solveris called. The defaultzalse as usually the same projector is appropriate for all contprta.

MG Eliminate Dirichlet Logical
At the highest level the fixed nodes may all be set to be coamse their value is not affected by the
lower levels. The default irue

MG Eliminate Dirichlet Limit Real
Gives the maximum fraction of non-diagonal entries for adbitet node.

MG Smoother String
In addition to the selection for the GMG optigor (symmetric over relaxation) is possible.

MG SOR Relax String
The relaxation factor for the SOR method. The defaultis 1.

MG Strong Connection Limit Real
The coefficient_ in the coarsening scheme. Default is 0.25.

MG Positive Connection Limit Real
The coefficient. in the coarsening scheme. Default is 1.0.

MG Projection Limit Real
The coefficient,, in the truncation of the small weights. The defaultis 0.1.

MG Direct Interpolate Logical
Chooses between direct and standard interpolation. TleutlésFalse .

MG Direct Interpolate Limit Integer
The standard interpolation may also be applied to nodesaritha small number of coarse connec-
tion. This gives the smallest number of nodes for which dimgerpolation is used.

Finally, there are also some keywords related only to thsteling multigrid.

MG Cluster Size Integer
The desired choice of the cluster. Possible choices aré,3,3,.and zero which corresponds to the
maximum cluster.

MG Cluster Alpha Real
In the clustering algorithm the coarse level matrix is natiropl for getting the correct convergence.
Tuning this value between 1 and 2 may give better performance

MG Strong Connection Limit Real
This is used similarly as in the AMG method except it is redetie positive and negative connections
alike.

MG Strong Connection Minimum Integer

If the number of strong connections with the given limit isaler than this number then increase the
set of strong connection if available connections exist.
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3.6 Implementation issues

3.6.1 The sparse matrix storage

To be efficient, iteration methods require that a matrixteeproduct for sparse matrices is efficiently im-
plemented. A special storage scheme called the Compresse&®rage (CRS)J is used in ElImerSolver
to store only those matrix coefficients that differ from zero

The matrix structure is defined in modulgpes as:

TYPE Matrix_t
INTEGER :: NumberOfRows

REAL(KIND=dp), POINTER :: Values(:)
INTEGER, POINTER : Rows(:), Cols(:), Diag(:)

END TYPE Matrix_t

The matrix type has several additional fields, but the basiage scheme can be implemented using the
fields shown. The arrayalues is used to store the nonzero elements of the coefficient xadthie array
Cols contains the column numbers for the elements stored in ttay &alues , while the arrayRows
contains indices to elements that start new rows. In addiftow(n+1) gives the number of nonzero
matrix elements + 1. The arrddiag is used to store the indices of the diagonal elements.

For example, to go through the matrix row by row the followingp may be used

USE Types

TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp):: val
INTEGER :: i, j, row, col

DO i=1, A % NumberOfRows

PRINT =, 'Diagonal element for row ', i, " is ', A % Values( A % Diag(i) )
DO j=A % Rows(i), A % Rows(i+1)-1
row = i

col = A % Cols())
val = A % Values())
PRINT =%, 'Matrix element at position:
END DO
END DO

, row,col, " is ', val

3.6.2 Subroutine calls

Most of the functionality of the sparse linear system solvkethe ElmerSolver is available by using the
function call

Norm = DefaultSolve().

The return valué&Norm is a norm of the solution vector.

Sometimes it may be convenient to modify the linear systeforbesolving it. A Fortran function which
performs this modification can be written by the user with tlagne of the function being declared in the
solver input file. For example, this technique may be usedtfmd a user-supplied linear system solver.

If the name of the user-supplied Fortran functiopiisc and it can be found in the file having the name
Filename |, the declaration

Before Linsolve File Filename proc
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in the solver input file has the effect that the function wil balled just before the default call of linear
system solver. The arguments the function can take are fixéduee declared as

FUNCTION proc( Model, Solver, A, b, X, n, DOFs, Norm ) RESULT( stat)
USE SolverUtils
TYPE(Model_t) : Model
TYPE(Solver_t) :: Solver
TYPE(Matrix_t), POINTER :: A
REAL(KIND=dp) :: b(:), x(:), Norm
INTEGER :: n, DOFs, stat

END FUNCTION proc

Here the Model structure contains the whole definition of ¢lraer run. The Solver structure contains
information for the equation solver from which this linegistem originates. The coefficient matexis in
CRS formatp is the right-hand side vector, axdcontains the previous solution. The argumeris the
number of unknowns, andOFsis the number of unknowns at a single node.

If the return value from this function is zero, the (poss)htyodified linear system is solved after the
return. If the return value is 1, the linear system is assutodak already solved and the vectoshould
contain the result. It is noted that the user-supplied Bartunction may also call the default linear equation
solver within the function, i.e. one may write the subroataall

CALL SolveLinearSystem( A, b, x, Norm, DOFs, Solver )

HereA andb may be modified so that the linear system which is solved netblsnisame as the input system.
In a similar way the user may also supply a user-defined Roftraction which will be called just after
the solution of linear system. This is done using the detitara

After Linsolve File Filename proc

in the solver input file. The arguments of this function are #ame as for a function in the context of
Before Linsolve keyword.
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Chapter 4

Nonlinear System Options

4.1 Introduction

Numerical methods in linear algebra are usually intendedHe solution of linear problems. However,
there are many problems which are not linear in nature. Thdimearity may a intrinsic characteristics
of the equation, such as is the case with intertial forceh@Navier-Stokes equation. The nonlinerity
might also a result of nonlinear material parameters thpedd on the solution. What ever the reason for
nonlinearity the equations in Elmer are always first lineadi to the form

Aui—1)u; = b(ui—1), (4.1)

wherei refers to the iteration cycle.

How the equations are linearized varies from solver toagrotfor example, in the Navier-Stokes solver
there are tow different methods — the Picard linearizatiod the Newton linearization that may be used.
Also a hybrid scheme where the Picard type of scheme is sedtthb the Newton kind of scheme when
certain criteria are met is available. Therefore this sectvill not deal with the particular linearization
technique of different solver but tries to give some lightlie generic keywords that are available. Some
keywords may also be defined in the Models Manual relatedticpéar solvers.

In multiphysical simulations there are also a number of kangs related to the solution of coupled sys-
tems. Basically one may may define how many times a systenmuatiens is solved repeatedly at maximum
and how what are the convergence criteria of the individakiess that must be met simulataneously.

4.2 Keywords related to solution of nonlinear systems

These keywords are located in the Solver section of eaclesdivequited at all.

Nonlinear System Convergence Measure String
The change of solution between two consecutive iteratioamg lpe estimated by a number of different
measures which are envoked by valuesm, solution  andresidual . The default way of

checking for convergence is to test the change of norm
6 = 2 [|ui| = |wi—1|[/(Jus] + ui-1]). (4.2)

This measure is rather liberal since the norm of two sol&iomy be the same even though the
solutions would not. Therefore it is often desirable to l@khe norm of change,

0= 2x |u; — wi—1|/(Jui| + |ui—1])- (4.3)

The third choice is to use a backward norm of the residual e/tfex old solution is used with the new
matrix.
0 = |Ax;_1 — b|/|b]. (4.4)
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In the current implementation this norm lags one step beanttitherefore always performs one extra
iteration.

Nonlinear System Norm Degree Integer
The choice of norms used in the evaluation of the convergemeasures is not self evident. The
default is theL2 norm. This keyword may be used to replace thislby norm where values = 0
corresponds to the infinity (i.e. maximum) norm.

Nonlinear System Norm Dofs Integer
For vector valued field variables by default all componemnésiesed in the computation of the norm.
However, sometimes it may be desirable only to use some of thiéis keyword may be used to give
the number of components used in the evaluation. For exanmptee Navier-Stokes equations the
norm is only taken in respect to the velocity componentsevpiessure is omitted.

Nonlinear System Convergence Absolute Logical
This keyword may be used to enforce absolute convergencsuresarather than relative. The default
is False .

Nonlinear System Convergence Tolerance Real

This keyword gives a criterion to terminate the nonlinearation after the relative change of the norm
of the field variable between two consecutive iterationsiglsenoughy < ¢, wheree is the value
given with this keyword.

Nonlinear System Max Iterations Integer
The maxmimum number of nonlinear iterations the solverlmngd to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration aftaumber of Picard iterations have been
performed. If a given convergence tolerance between twatitns is met before the iteration count
is met, it will switch the iteration type instead. This agglionly to some few solvers (as the Navier-
Stokes) where different linearization strategies arelakés.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, ifriélative change of the norm of the field
variable meets a tolerance criterion:
0 <€,

wheree is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the lnoear equation solver. Using a factor
below unity is sometimes required to achive convergencéefrionlinear system. Typical values
range between 0.3 and unity. If one must use smaller valuethéorelaxation factor some other
methods to boost up the convergence might be needed to iehevconvergence. A factor above
unity might rarely speed up the convergence. Relaxed Varialdefined as follows:

u; = \u; + (1 - /\)ui,l,
where is the factor given with this keyword. The default value foe relaxation factor is unity.

Many of the keywords used to control thenlinear System  have a corresponding keyword for the
Steady State. Basically the operation is similar exceptéfierence value for the current solutionis the
last converged value of the nonlinear system before stpatimew loosely coupled iteration cycle. Otherwise
the explanations given above are valid.

Steady State Convergence Measure String
Steady State Norm Degree Integer
Steady State Norm Dofs Integer
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Steady State Convergence Tolerance Real
Steady State Relaxation Factor Real
Additionally these keywords are located in tBenulation  section of the command file.

Steady State Max lterations Integer
The maximum number of coupled system iterations. For stetatg analysis this means it litelarly,
for transient analysis this is the maximum number of iteradiwithin each timestep.

Steady State Min Iterations Integer
Sometimes the coupling is such that nontrivial solutiore @lotained only after some basic cycle
is repeated. Therefore the user may sometimes need to sethalsninimum number of iterations.
Sometimes the steady state loop is also used in a dirty wap spthe systematic procedures — for
example computing the capacitance matrix, or lumped elagtings. Then this value may be set to
an a priori known constant value.
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Chapter 5

Integration of time-dependent systems

5.1 Introduction

Solving time-dependent systems is becoming more and manencm in various branches of computational
science, as the computer resources grow steadily. EiImezSmlay be adapted to solve such systems. The
first order time derivatives may be discretizated by usirggftiilowing methods:

e the Crank-Nicolson method
o the Backward Differences Formulae (BDF) of several orders

In the case of the first order BDF scheme adaptive time-stepgirategy may also be used.
The second order time derivatives are approximated by mitsiag the Bossak method or reformulating
the second order equations as equivalent systems of first ecgliations.

5.2 Time discretization strategies
Consider the numerical solution of the evolutionary fieldiaipn

o¢
= A
o TKo=1. (5.1)
where the differential operatd€ does not involve differentiation with respect to timend f is a given

function of spatial coordinates and time. The spatial @iszation of 6.1) leads to the algebraic equations
M2 ko F, (5.2)
ot
whereM, K andF result from the discretization of the identity operatoe tiperato/C and f, respectively.
The vectord contains the values of the unknown fielct nodes.
The applications of the first three BDF methods to discrédiiae time derivative term irb(2) yield the
following systems:

1 . . 1 _
— M+ K)ot = pitl 4~ M@? 5.3
(At * ) A ’ (®-3)
1 2 ‘ 2 . 1 4 . 1_.

— M+ K)ot =2t M= — ! 4
(At T3 ) 3 Y (3 3 ’ ®4)

1 6 ‘ 6 . 1 8. 9 . 2 .
— M+ —K|oH = —Ftl 4 M= — 4 o2 5.5
<At 1 ) 11 A <11 11 1 ’ (5.5)

whereAt is the time step and’ is the solution at time step Similarly, F* is the value ofF’ at time step.
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All the BDF methods are implicit in time and stable. The aegigs of the methods increase along with
the increasing order. The starting values for the BDF sclsemherdern > 1 are computed using the BDF
schemes of order, ..., n — 1 as starting procedures. It should be noted that the BDFetigations of order
n > 3 do not allow the use of variable time-step size. Adaptivestistepping strategy may also be used in
the case of the first order BDF scheme.

The adaptive time-stepping is accomplished by first soltiregsystem using a trial time step and then
using two time steps the lengths of which equal to the halhaf bf the trial time step and comparing the
results. If the difference between the results is found teldéciently small, the use of the trial time step is
accepted. Otherwise a new trial time step is defined by digidihe previous trial time step into two steps
of equal length and then the procedure is repeated. One nfaedme’s own criterion for determining
whether the use of the current time step is accepted. Theltlefaerion is that the norms of the solutions
to each system of field equations do not differ more than thergtihreshold value.

The time discretization of the second order equation

9?® 0P
W‘FBE-FK(I):F (5.6)

using the Bossak method leads to the system

M

1

1— , . — . (1 — .
( Sl B+K>@”1:F”1+M< @ pip Yy a)AZ>+

B(AL)? BAEL B(AL)? BAt 23 (5.7)
Y o i B i .
b (3 1) v (1o ) )
where

VL= Vi 4 At ((1— ) A" +yAT)
i1 1 i1 gy L i R WY

ALt _75(At)2((1)+ (I)) ﬂAtV + <1 2ﬂ>A, (5.8)
ﬂzi(l—a)% 7:%—04.

In the following the matriced/ and B are referred to as the mass and damping matrix, respectively

5.3 Keywords related to time discretization

All the keywords related to the time discretization may beegiin Simulation section of the solver input file
(.sif file). A number of keywords may also be given in Solvertsm, so that each system of field equations
may be discretizated using independently chosen timgstgpnethod. If keywords are not given in the
Solver section, the values of the keywords are taken to b&etiven in the Simulation section. It should
be noted that certain keywords such as those controllingtingber of time steps, time-step sizes etc. may
only be given in the Simulation section.

Timestepping Method String
This keyword is used to declare the time discretizatiortatyafor the first order equations. The value
of this keyword may be set to be eitH&DF” or "Crank-Nicolson” and may be given in either
Simulation section or Solver section of the solver input file

BDF Order Integer
This keyword is used to define the order of the BDF method angdtaie values 1,...,5. This keyword
may be given in either Simulation section or Solver sectibthe solver input file.

Time Derivative Order Integer
If a second order equation is discretizated, this keywordtnine given the value 2 in the Solver
section of the solver input file. It should be noted that theose order time derivatives are always
discretizated using the Bossak method.
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Bossak Alpha Real [-0.05]
This keyword is used to define the value foim the Bossak method used in the time discretization of
second order equations. This keyword may be given in eitlreulation section or Solver section of
the solver input file.

Timestep Intervals Integer array
This keyword is used to define the number of time steps. It negrpay-valued so that different
time-step lengths may be used for different time intervatbe entire simulation. For example, if one
wishes to take first 50 time steps and then to use a differaet sitep length for the following 100 time
steps, one may define

Timestep Intervals(2) = 50 100

and use th@imestep Sizes keyword to define time-step lengths for the two sets of tirepst

Timestep Sizes Real array
This keyword is used to define the length of time step. If tHaevaf theTimestep Intervals
keyword is array-valued, the value of this keyword must éls@an array of the same size. For example,
if one has defined

Timestep Intervals(2) = 50 100
the declaration
Timestep Sizes(2) = 0.1 1.0

sets the time-step length for the first 50 time steps to berdX@ the remaining 100 time steps 1.0.

Timestep Function Real
Instead of using th&imestep Sizes keyword the length of time step may be defined by using
this keyword. The value of this keyword is evaluated at thgito@ng of each time step. A variable
time-step length may conveniently be defined using a MATCastren function.

Output Intervals Integer array
This keyword is used to define the time-step interval foriwgthe results on disk. As in the case of
theTimestep Sizes keyword the size of the value of this keyword must be compatisth that
of the Timestep Intervals keyword. The value at a step is saved if for the corresponding
output intervab mod(m-1,0)==0 . An exception is output interval equal to zero for which autis
not saved at all. However, the last step of the simulatiohways saved.

Lumped Mass Matrix Logical [false]
The use of a lumped mass matrix may be activated by settingaiie of this keyword to b&rue in
the Solver section of solver input file. The default lumpiaglefined by

Zi Zj M;;

M = M; ==~

(22

(5.9)

The keywords related to the adaptive time-stepping may belygiven in the Simulation section of the
solver input file. When the adaptive time-stepping straiegysed, a set of trial time steps is defined using
the keywords introduced above. The adaptive procedurecisug®d for each of these trial steps. Note that
the adaptive time-stepping is possible only in the caseefitht order BDF scheme.

Adaptive Timestepping Logical [false]
The value of this keyword must be set tobeie if the adaptive time integration is to be used.

Adaptive Time Error Real
This keyword is used to define the threshold value for theddn for determining whether the use of
the current time step is accepted.
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Adaptive Error Measure Real
Using this keyword one may define one’s own measure for etiafyahe difference between the
computed results. This measure and the threshold valuehvidgiven using th&daptive Time
Error keyword, may be used to define a user-defined criterion f@rdehing whether the use of the
current time step is accepted. The value ofAlgaptive Error Measure keyword is evaluated
twice for each trial time step. For the first time the valueha keyword is evaluated after the system
is solved using the trial time step. The second time is afterstystem is solved using two time steps
the lengths of which equal to the half of that of the trial tistep. The absolute value of the relative
difference between these two values is compared to thehbictvalue given by theé\daptive
Time Error keyword to determine whether the use of the current time istepcepted. If several
systems of field equations are solved, all the solutions saify the similar criterion. If this keyword
is not used, the default criterion is based on comparing tiima of the solution fields.

Adaptive Min Timestep Real
Using this keyword one can limit the subsequent divisiorhefttial time steps by giving the minimum
time-step length which is allowed.

Adaptive Keep Smallest Integer [1]
By default the adaptive scheme tries to double the lengthefine step after the acceptable time
step is found. If a value > 1 is given for this keyword, the adaptive scheme tries to iasesthe step
length after taking n steps which are at most as long as tpdestgth accepted.

5.4 On the treatment of time derivatives in EImer Solver code

In the following a number of issues that may be useful if ongriting a code to solve one’s own application
are explained.

By default ElImer Solver does not generate or use global madamping matrices in the solution of
time-dependent systems. Mass and damping matrices neecctniputed only element-wise, as the linear
system resulting from the time discretization, such &g)( is first formed element-wise and this local
contribution is later assembled to the global system. Inctee of the first order equatioB.p) the local
linear system may be formed by using the subroutine call

CALL DefaultlstOrderTime( M, K, F ),

whereM is the element mass matrik is the element stiffness matrix addis the element force vector. In
a similar manner, in the case of the second order equai@®hdne may use the subroutine call

CALL Default2ndOrderTime( M, B, K, F ),

whereB is the element damping matrix.

Note that these subroutines must also be called for the loa#ices and vectors that result from the
discretization of neumann and newton boundary condititittie boundary conditions do not contain any
time derivatives, thé/ and B matrices should be set to be zero before calling the abovestibhes.

If the global mass matrix is required, it may be generateddiggithe subroutine call

CALL DefaultUpdateMass( M )
Similarly, the global damping matrix may be generated bypas$he subroutine call
CALL DefaultUpdateDamp( B ).

Global mass (and possibly damping) matrices are requiogagxample, in the solution of eigenvalue prob-
lems. One may also implement one’s own time-stepping scladitie global level using these matrices.
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Chapter 6

Solving eigenvalue problems

6.1 Introduction

Eigenvalue problems form an important class of numericabfams, especially in the field of structural
analysis. Also some other application fields may have eigleieproblems, such as those in density func-
tional theory. This manual, however, introduces eigervalmputation in Elmer using terminology from
elasticity.

Several different eigenvalue problems can be formulatedlasticity. These include the “standard”
generalized eigenvalue problems, problems with geomstifitess or with damping, as well as stability
(buckling) analysis. All of the aforementioned problema && solved with Elmer. The eigenproblems can
be solved using direct, iterative or multigrid solution imed's.

6.2 Theory

The steady-state equation for elastic deformation of satidy be written as
~V-r=71, (6.1)

wherer is the stress tensor. When considering eigen frequencysiaathe force temfis replaced by the
inertia term,

2
T = pwa

—Vv (6.2)

wherep is the density.
The displacement can now be assumed to oscillate harmiynicitth the eigen frequency in a form
defined by the eigenvectdr Inserting this into the above equation yields

=

—V-7(d) = —w?pd, (6.3)

or in discretized form
Ku = —w?Mu, (6.4)

where K is the stiffness matrix)/ is the mass matrix, and is a vector containing the values dfat
discretization points. The equatiémis called the generalized eigenproblem.

Including the effects of pre-stresses into the eigenprobtequite straightforward. Let us assume that
there is a given tension field in the solid. The tension is included by an extra term in tleady-state
equation

—V-7-V-(oVu) = f. (6.5)

The pre-stress term includes a componggtto the stiffness matrix of the problem and thus the eigerealu
equation including pre-stresses is
(K + Kg)u = —w*Mu. (6.6)
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The pre-stress in EImer may be a known pre-tension, due trredtloading or due to thermal stress,
for example. The stress tensor containing the pre-stresgefirst computed by a steady-state analysis and
after that the eigenvalue problem is solved. It should bedttough that the eigenvalue problem in a pre-
stressed state is solved using first order linearizationchvimeans that the eigenvalues are solved about the
non-displaced state. If the pre-loading influences larderdetions the eigenvalues are not accurate.

The eigenvalue problem with pre-stresses may be used tg 8tadtability of the system. Some initial
loading is defined and a pre-stress tens@ computed. This tensor is then multiplied by a test scaldrhe
critical load for stability, or buckling, is found by settirthe force on the right hand side of the equatob
equal to zero. The problem then is to soivérom

Ku=—-\Kgu, (6.7)

which again is formally an eigenvalue problem for the testapeeter. The critical loading is found by
multiplying the given test load with the value &f In other words, ifA > 1 the loading is unstable.

6.2.1 Damped eigenvalue problem

Finally, let us consider the damped eigenproblem, alsedajuadratic eigenvalue problem. In this case
there is a force component proportional to the first timedgive of the displacement in addition to the
inertia term od o2

_V'T:_(SE_pr’
whered is a damping coefficient. The problem is transformed into aarsuitable form for numerical
solution by using a new variabié defined ag’ = ‘g—f. This yields

(6.8)

=1
—V-T:—&T/—l—p%—i. (6.9)

Working out the time derivatives and moving into the matoxr, the equation may be written as

Ku=—Dv+iwMv, (6.10)

(1 0)()-(h L)) e

where: is the imaginary unitD is the damping matrix, and a vector containing the values &f at the
discretization points. Now the damped eigenproblem issfiamed into a generalized eigenproblem for
complex eigenvalues.

Finally, to improve the numerical behavior of the dampedegoblem, a scaling constasnis intro-
duced into the definition?’ = s%. In the matrix equatior®.11 this influences only the identity matrix
blocksI to be replaced by/. Good results for numerical calculations are found when

or,

s =||M||oo = max |M;;|. (6.12)

6.3 Keywords related to eigenvalue problems

An eigenvalue analysis in Elmer is set up just as the corredipg steady-state elasticity analysis. An
eigenvalue analysis is then defined by a few additional kegsvon the Solver section of the sif file. The
solver in question can be linear elasticity solver calle@&t Analysis, linear plate elasticity solver, or even
nonlinear elasticity solver, though the eigen analysisfigourse, linear.

Many of the standard equation solver keywords affect alsaeigen analysis.g. the values given for
Linear System Solver and Linear System lIterative Methodaisecof an iterative solver. More information
about these settings is given in this Manual under the chapteerning linear system solvers. The specific
keywords for eigen analysis are listed below
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Eigen Analysis Logical
Instructs Elmer to use eigensystem solvers. Must be setu® ifirall eigenvalue problems.

Eigen System Values Integer
Determines the number of eigen values and eigen vectorsuaahp

Eigen System Select String
This keyword allows the user to select, which eigenvaluesamputed. The allowable choices are

Smallest Magnitude
Largest Magnitude

Smallest Real Part

Largest Real Part
Smallest Imag Part
Largest Imag Part

Smallest magnitude is the default.

Eigen System Convergence Tolerance Real
The convergence tolerance for iterative eigensystem solMee default is 100 times Linear System
Convergence Tolerance.

Eigen System Max lIterations Integer
The number of iterations for iterative eigensystem solVée default is 300.

Eigen System Complex Logical
Should be given value True if the eigen system is complexthe system matrices are complex. Not
to be given in damped eigen value analysis.

Geometric Stiffness Logical
Defines geometric stiffness (pre-stress) to be taken intowad in eigen analysis. This feature is only
available with linear bulk elasticity solver.

Stability Analysis Logical
Defines stability analysis. This feature is only availabléhiinear bulk elasticity solver.

Eigen System Damped Logical
Defines a damped eigen analysis. Damped eigen analysidletds@nly when using iterative solver.

Eigen System Use Identity Logical

If True defines the relation displacement and its derivatiMee s’ = sg—f. The other possibility is to
useMwv = iwMu. The defaultis True.

6.4 Constructing matrices M and D in Solver code

In eigen analysis the mass matrix and the damping matri© have to be separately constructed. Usually
in EImer the different matrices are summed into a single ixatructure, since the final linear equation is
of the form Ax = b, and there is no need for separate values of the mass mattitharstiffness matrix.

The matrix is represented in Elmer using compressed rovageofCRS) format, as explained in chapter
about Linear system solvers. The matrix structure holdsadstors for the values of the mass and damping
matrices

TYPE Matrix_t
REAL(KIND=dp), POINTER :: MassValues(:), DampValues(:)

END TYPE Matrix_t
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These arrays use the saRews andCols tables than the norm#falues array.

The mass and damping matrices are constructed elementvwas@milar manner as the stiffness matrix.
After each element the local contributions are updatedécetifuation matrices by the following subroutine
calls

CALL DefaultUpdateEquations( STIFF, FORCE )

IF ( Solver % NOFEigenValues > 0 ) THEN
CALL DefaultUpdateMass( MASS )
CALL DefaultUpdateDamp( DAMP )

END IF

In this segment of code the variabl83IFF , MASS DAMPand FORCEstore the local values of the
stiffness matrix, the mass matrix, the damping matrix, dedright hand side of the equation, respectively.
The integeNOFEigenValues if the Solver data structure gives the number of eigen values requested.
Here it is used as an indicator of whether the mass and dampmatigces need to be constructed.

The eigenvalues and eigenvectors are stored in the a8a@ysr % Variable % EigenValues
andSolver % Variable % EigenVectors ,

TYPE Variable t

COMPLEX(KIND=dp), POINTER :: EigenValues(:)
COMPLEX(KIND=dp), POINTER :: EigenVectors(:,:)

END TYPE Matrix_t

and the eigenvector corresponding to the eigenvaiséound inSolver % Variable % EigenVectors(i,:)
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Chapter 7

Generic solver utilities

When the solvers use the default procedure for solving tfierdntial equations there are a number of
generic features that may be used with any equation. Thistehdescribes these features.

7.1 Solver activation

There is a large number of different ways how solvers needetadiivated and deactivated. Mostly there
needs are related to different kinds of multiphysical cougpschemes. In thBolver section one may give
the following keywords.

Exec Solver String
The options areever, always, before timestep, after timestep, bofore all ,
after all, before saving, after saving . If nothing else is specified the solver i
called every time in its order of appearance. The savingircst refers to the one defined Gutput
Intervals and used to save the results.

Exec Interval Integer
This keyword gives an interval at which the solver is actikeother intervals the solver is not used.

7.2 Variable names

The variable name is presented in Belver section by keywor&/ariable , for example
Variable = Varname

This name is used when setting Dirichlet conditions andaihitonditions. Also the name is used as a basis
for other features appending it with suffixes such.aad, Condition andPassive , described later in
this chapter.

Sometimes one wants to give rename the components of theugrivariable. This may be done in
defining the component names in the brackets, for example.

Variable = Flow[Velo:2 Pres:1]

Decleares that variablow consists ofVelo with two components anflres with one component. If the
number of components is 2 or 3 the variable will be treatedactor in the ElImerPost files.
If one does not require output for a given variable one mayededt with the-nooutput  option e.g.

Variable = -nooutput Dummy

If one wants to decleare the number of dofs of the variable@agalso use thedofs option to define
the number of components in a variable e.g.

Variable = -dofs 3 Flow
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By default variables are assumed to be field variables. Hewdéhey may also be scalars which have
globally the same value. These variables may also be intexiwith the-global  option e.g.

Variable = -global Frequency

After defining a global variable it may be used similarititme in giving dependencies.
These different options should not be fully mixed.

7.3 IdxExported variables

Each solver that has a primary variable (defined byMhdable  keyword) may also have exported vari-
ables. Thisis active at the he value of exported variablggbreaet either iBody Force orinBoundary
Condition Section by defining the value on the r.h.s. of the variablename. Tatgthe same nodes
as the primary variable, and may have the same optional a&gtsm

The intent of exported variables is to enable automaticcation and treatment of additional data that
may usually be derived from the primary fields. Often this imé within the Solver and many times the
machinery is used transparently from the user. Upon redhestxported variables may also be defined by
the userinth®ody Force andBoundary Condition sections. The operationis set behind keywords
to circumvent unwanted definitions.

Solver solver id

Exported Variable i Varname
A name for an additional veriable computed by the solver, 253, . . ..

Update Exported Variables Logical
Update the exported variables after leaving the iteratdlateon for the next solver i.e. in the
steady-state level.

Nonlinear Update Exported Variables Logical
Update the exported variables within the nonlinear sofutar the current.

7.4 Dirichlet conditions

In finite element method there are two kinds of boundary dima. The natural boundary condition that
may be set by only affecting the r.h.s. of the equation ane#isential boundary conditions where also the
matrix needs to be tampered. The latter ones are also call&zhlet boundary conditions. The natural
boundary conditions are often more problem specific so teeisgdirected to the Models Manual for more
details on them.

Technically the Dirichlet conditions in ElImerSolver aré ggough manipulating only the values in the
matrix rather than its structure. To be more specific, inisgtthe degree of freedom with indéxhe :th
row of the matrix is set zero, except for the diagonal whickasto be unity. When also the r.h.s. of the
equation is set to the desired value, the solution will atfee Dirichlet condition. The Dirichlet conditions
may be set to existing boundary elements. Additionallydbitet conditions may be set for set of nodes that
are created on-the-fly.

Usually the Dirichlet conditions are given at objects whitdwve a lower dimension than the leading
dimension in the geometry, i.e. for 3D problems values atealls fixed only at 2D faces. However, it is
possible also to set the conditions for the bodies also. miaig be particularly useful when the condition is
only conditional.

There is a handicap with this procedure which is that the sginyrof the original matrix will be lost.
This may affect the performance of linear system solverserigure to symmetricity of the matrix equation
there are two remedies. Also the column may be zeroed andntherkvalues may be subtracted from the
r.h.s. The second option is to eliminate all the rows androolsirelated to the known values. This reduces
the size of the matrix but of has an additional cost as a sexgmdatrix is created and the values are copied
into it.
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Sometimes the Dirichlet conditions should depend on othgaliles in a way which defined whether or
not to set the conditions at all. For example, the tempegatia boundary should be defined only if the flow
is inside the boundary. For outflow the definition of the temapére is not physically justified. For this kind
of purposes the user may give a condition that is a variabitsédf. If this variable is positive the Dirichlet
condition is applied,

Boundary Condition bc id

Target Boundaries(n) Integer
The set of boundaries for which the Dirichlet conditionslwé applied on.

Target Nodes(n) Integer
Sets point conditions on-the-fly. These points refer to th&otute indexing of the nodes.

Target Coordinates(n,DIM) Real
Ccoordinate values which are transformed into nodal ingereresponding to the nearest nodes
at the time of first call. Target groups defined Dgrget Boundaries |, Target Nodes
andTarget Coordinates should not reside in the same boundary condition definition.

Varname Real
Each variable which has an equation that is solved for, magebéy giving its value at the
boundary conditions section. If the variables are notdistethe keyword listing the user shoul
also define the type which Real .

Varname i  Real
For multicomponent fields the Dirichlet condition may beteetach field separately.
Varname Condition Real

The Dirichlet condition related to the variable is set aetnly if the condition is positive.

The Dirichlet conditions for bodies. It is also possible ¢&b the values of exported variable here with
exactly same logic.

Body Force body force id

Varname Real
The setting of Dirichlet conditions for the whole body falle the same logic as for the bound-
aries. When the body force is assigned to a body the valuébeviixed as defined.

Varname Condition Real
The conditional Dirichlet condition may also be given fodes.

These may be use in conjunction with the Dirichlet cond#itmaffect the setup of the matrix equa-
tion.

Solver solver id

Linear System Symmetric Logical True
Make the matrix symmetric by eliminating the known valuestirthe r.h.s and zeroing the matrix
entries.

Before Linsolve "EliminateDirichlet" "EliminateDirichlet"
Creates a secondary matrix with a reduced size by elimigdirichlet conditions and passing
this to the linear system solver.

7.5 Soft Limiters

The user may set soft lower and upper limits to the values@fitid variable. For example, concentration
can never be negative and hence a zero lower limit could béeapfor it. The limits are applied in an
iterative manner defining a contact set where Dirichlet dtions are applied. A node is included in the
contact set when its value passed the limits, and a nodesiasedl from the contact set when the nodal load
related to it is negative (or positive). The limiters may Ippléed to both boundary conditions and bodies.
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Solver solver id

Apply Limiter Logical True
Activates the search for limiters and also activate the aatatpon of nodal loads.

Limiter Value Tolerance Real
Defines the tolerance of the field value by which a node is atlléite contact set.

Limiter Load Tolerance Real
Defines the tolerance of the nodal load by which a node is rechérom the contact set.

Limiter Load Sign Negative Logical
The default sign used for determining the contact set isvddrfrom the default discretization
of the Poisson equation. If the equation would be multipbgd-1 the load would also change
sign. That in mind, a possibility to influence the rules isagiwith this keyword.

Boundary Condition bc id

Varname Lower Limit Real
The lower limit of field variable.

Varname Upper Limit Real
The upper limit of field variable.

Body Force body force id

Varname Lower Limit Real
The lower limit of field variable.

Varname Upper Limit Real
The upper limit of field variable.

7.6 Periodic conditions

Periodic BCs may be considered to be a special case of Detichhditions where the fixed value is given as
linear combination of other unknown values. The periodiarmtary conditions in Elmer are very flexible.
In fact they may even be antiperiodic.

Boundary Condition bc id

Periodic BC Integer
This refers to the counterpart of the periodic boundary diord This means that periodic
boundaries come in pairs, and for the other boundary you oeéd to give pointer to.

Periodic BC Explicit Logical
Sometimes the implicit periodic BCs (the default) leadsdavergence problems, also it com-
plicates the matrix structure by adding additional conioest Then the explicit type of periodic
conditions may be a good alternative. Note that it requiberaiion even for a linear operator.

Periodic BC Translate(3) Real
The periodic boundary is mapped to the other boundary bttiifeerent operations: translation,
rotatition and scaling. This generality is not usually neg¢dnd therefore default value is used.
For the translation vector the default is the vector thatdsaimed when moving in the normal
direction of the first boundary until the target boundaryits H this is not desired the user may
give another translation vector using this keyword.

Periodic BC Rotate(3) Real
By default no rotation is performed prior to the mapping olues. This keyword may be used
to give the angles of rotation.

Periodic BC Scale(3) Real
By default there is no scaling performed prior to the mappihgalues. This keyword may be
used to give a scaling vector if this is desired.
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Periodic BC Variable Logical True
The user should define the variables that are to be periodiatinre. This is done by attaching
their names into logical expressions following the striteriodic BC

Anti Periodic BC Variable Integer
The variable may be also antiperiodic i.e. the absoluteevalthe same but the sign is different.
Then this should be used instead.

7.7 Setting nodal loads

Similarly to the Dirichlet values one may also set nodal biel. entries for the r.h.s. of the matrix equation.
Generally there are good reasons to avoid the use of nodds las they are mesh dependent. There are,
however, some uses also for setting nodal loads. For exampiaultiphysical couplings sometimes it may
be a good solution to transfer the forces directly in nodaifas this is the most accurate way to compute
the forces resulting from the discrete system.

Body Force bf id

Varname Load Real
Sets the given value to the r.h.s. of the matrix equatioriedlto the solution of the variable. Note
that this value is a nodal quantity. The nodal loads are géxerctly as the Dirichlet conditions
except that a stringoad is attached to the name of the variable.

7.8 Computing nodal loads

It is possible to evaluate the nodal loads after the solusocomputed. This however, requires that the
original matrix A, that has not been eliminated for Dirichlet conditions isezshvThen the the nodal forces
may be computed from

f=Aqr —b. (7.1)

It should be noted that the nodal value is mesh dependenthéairequation it will be in Watts and for
electrostatic equation in Coulombs, for example.

Solver solver id

Calculate Loads Logical True
This keyword activates the computation of nodal loads. Hseilting values will be saved to
variable which is derived from the primary variable by adgthe suffixLoads to it.

7.9 Energy norm
When the initial matrix is known an energy norm may be comgute

E=zT Ayz. (7.2)
Solver  solver id

Calculate Energy Norm Logical True
Activates the computation of the energy norm. The result mél saved to th&imulation
block with namees: VarName Energy Norm which may further be saved IS8aveScalars
The energy norm may only be computed when also the loads arputed.

CSC — IT Center for Science [@)ev-no |



7. Generic solver utilities 43

7.10 Computing nodal weights

The nodal weights often give the best approximation of bampéluxes, for example. However, they are in
cumbersome units as the nodal loads depend very much on gt@nge It would be more ideal to transfer

the loads into distributed fields. To this aim there is a gabfi to compute just the nodal weigts associated
to a finite element mesh and its standard integration sch&mme sum of all weights should be the volume
(or area) of the domain occupied by the elements.

Solver solver id

Calculate Weights Logical True
This keyword activates the computation of nodal weights.

7.11 Active and passive elements

In Elmer it is possible to define certain areas of the modeksshgetry passive during the solution. This
feature allows also deactivating and reactivating of tleenants. An element being passive means that its
contribution is not included into the global matrix equatidOne could, for example, model two separate
bodies heated with different heating power, and connechtéh a third structure only after suitable time
has elapsed. This all could be modeled within a single sitiwla

The geometry of the whole system is meshed as usual, and $s@a&lements are only omitted from
the equations. The passive definition is done solverwiseedemmentwise. The former means that, eg.,
the temperature may be passive and the displacements attive same element. The passive property of
elements is defined with a real valued parameter with the ramstructed from the name of the variable
followed byPassive intheBody Force section. When the parameter obtains a value greater than zer
the element is passive.

Body Force  body force id

Varname Passive Real
If this variable obtains a positive value the element is sssjve and assembled for. Note that it
is not possible to control components of vector valued \demseparately.

7.12 Timing the solvers

Often it is of interest to time the performance of the diffarsteps in the solution sequence. For that purpose
there are some keyword for activating timers for the solvers

Solver solver id

Linear System Timing Logical True
This keyword activates the timing for the linear system.

Linear System Timing Cumulative Logical True
This keyword sums up the cumulative time used for in the lirsyatems.

Solver Timing Logical True
This keyword activates the timing for the whole solver irtihg iteration over nonlinear and
linear systems etc. The time used for assembly may roughlgstienated as the difference
between the linear solution time and total time used in tieeso

Solver Timing Cumulative Logical True
As the previous one but sums up the cumulative time used isdhver.
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Chapter 8

Meshing Utilities

8.1 Introduction

ElmerSolver includes some internal possibilities to dftbe mesh. One of them is the ability to split the
mesh repeatedly on a partitioned level. This makes it ptestilcreate meshes with a very large number of
elements. The functionality is used in geometric multighidt it may also be used as a preprocessing step
for any linear system solver.

8.2 Keywords related to mesh utilities

Mesh Levels Integer
The number of mesh levels when using the equal split feature.

Mesh Keep Integer
The user may choose to optionally keep more than one levés ctiuld be needed for coarser post-
processing, for examle.

Mesh Keep Grading  Logical
When creating meshes using equal split the elements arefayltigplit to equally sized pieces. When
this flag is on the solver tries to maintain the mesh grading.

Mesh Grading Power  Real
The mesh grading is evaluted from the element sizes of tied mesh. The size is a scalar function
and cannot therefore handle very complicated meshes. Rordawoy layer type of meshes optimal
value is one, while for Delaunay type of meshes the optimlaleves the space dimension.
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Chapter 9

Adaptive Solution

9.1 Introduction

A posteriori error analysis and adaptive mesh refinememaweadays standard tools in finite element anal-
ysis when cracks, boundary layers, corner singularitibeck waves, and other irregularities are present.
A posteriori error indicators can be used to reveal flaws iitdirlement discretizations and well designed
adaptive mesh refinemenets can reduce the computationaldrastically.

9.2 Theory

Let us consider equilibrium equations of the form
—V-.qg=finQ, (9.1)
g-n=gonl, (9.2)

whereq is either a flux vector or a second order stress teri3@s,a computational domaii, is a boundary
part, f is an external source or body forggeis an external flux or traction andis the unit outward normal
to the boundary.

Most symmetric steady state problems described in the moaelual of Elmer [] fit in the above
framework of equilibrium equations. To fix ideas, suppos& this the heat flux satisfying Fourier’s law
q = —kVT,whereT is the temperature aridis the heat conductivity of the material. We could also think
of ¢ as the stress tensor of linear elasticity. In this case Hedkw states thaty = £ : ¢, wheref is
the fourth order tensor of elastic coefficienis= symm(Vu) is the linearized strain tensor andis the
displacement vector.

9.2.1 A posteriori estimate

Let us denote the finite element approximatiom &y ¢, and measure the errgr— ¢, as

ERROR = / lg — gn|? dQ (9.3)
Q

Our primary goal is to ensure the accuracy of the solutiomiyydsing the condition
ERROR <TOLERANCE (9.4)

whereTOLERANCE > 0 is an error tolerance prescribed by the user.
In practise, the goal must be replaced by a stronger comditio

ESTIMATE <TOLERANCE (9.5)
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whereESTIM AT E is a computable functional (of all available data) satisfyi
ERROR < ESTIMATE (9.6)

Then, if 9.5) holds, 8.4) is satisfied and the quality of the numerical solution isrgageed.
In Elmer the a posteriori estimat®.f) is computed from local residuals of the finite element sofuas

a weighted sum over the elements,
ESTIMATE = | " n%, (9.7)
E

whereng is the local error indicator for an individual elemefit

= aEh%/ IV qu+ a0
E

=+ 6E' Z he/‘[[qll'ne]]e|2 ar (98)
ein Q €

+ e Z he/‘%-ne—gfdl“
eon I’ €

Hereag, B, and~g, are local positive constants. The values of these corsstieiend, among other
things, on the problem to be solved, and must be estimatedutigrcase by case [].

The first sum in 9.8) is taken over all edgesof E inside the computational domain, the second sum is
taken over all edges on the boundary dar{-]. is the jump in(-) acrosse, andn, is a unit normal to the
edge.hg is the size of the element aid is the size of the edge.

The first term on the right-hand-side &1.8) measures the local residual of the finite element solution
with respect to the equilibrium equatio@.{). The second term measures the discontinuity in the nualeric
flux inside2 and the third term the residual with respect to the boundeaylition ©.2).

9.2.2 Adaptivity

The secondary goal of our numerical computations is to findlati®n satisfying 9.4) as efficienciently as
possible. A nearly optimal solution strategy is obtainedulifizing the property (here we need to impose
some minor restrictions ofi andg, see [])

LOCAL ERROR > ng (9.9)

where
LOCAL ERROR = / lg — qn|? dQ (9.10)
E
The estimate suggests that the error in the numerical solghould be reduced efficiently if the mesh is
refined locally where the indicators; are large. Naturally, we can think of coarsening the meshreviiee
values of the indicators are small.

The adaptive mesh refinement strategy of Elmer is based dadhkestimate4.9) and on the following
additional assumptions and heuristic optimality condisio

e The local error behaves as
ng = Cphh? (9.11)

for some constants§'y andpg.

e In the optimal mesh the error is uniformly distributed ovee elements:

e = TOLERANCE/NelementS (912)
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The constant§'r andpg in (9.11) can be solved locally for each element if the local erroid e local
mesh sizes are known from at least two different solutiortse $econd rule9.12 can then be applied to
extrapolate a new nearly optimal mesh density for the subsgacalculations.

The mesh refinements can be performed eiher by splittingxfstiey elements into smaller using the
so called RGB-refinement strategy described in [], or by meming a complete remeshing of the computa-
tional domain using the built-in unstructured mesh gemgsahat produce high quality Delaunay triangula-
tions. In the latter alternative not only mesh refinementissible, but also local adaptive coarsening.

9.3 Keywords related to the adaptive solution

The adaptive solver of Elmer is activated and controlledh®yfollowing keywords in the Solver block of
the solver-input-file.

Adaptive Mesh Refinement Logical
If set to true, then after the solution of the linear systeegtogram computes residual error indicators
for all active elements, estimates the global error, compatnew mesh density and refines the mesh
accordingly.

Adaptive Remesh Logical
If set to true, then a complete remeshing is performed after estimation using the Mesh2D or
Mesh3D generators. The new mesh density is written in filerfegh”. If set to false, then the RGB-
splitting strategy for triangles is applied to perform tle@imements.

Adaptive Save Mesh Logical
If set to true, the subsequent meshes are stored in diresRefinedMeshN , whereN is the number
of the adaptive iterate.

Adaptive Error Limit Real
Error tolerance for the adaptive solution.

Adaptive Min H Real
Imposes a restriction on the mesh size. Defualt is zero.

Adaptive Max H Real
Imposes a restriction on the mesh size. Default is infinite.

Adaptive Max Change Real
Controls the change in local mesh density between two sulese@daptive iterates. Using this key-
word the user can restrict the refinement/coarsening taligkhe adaptive solution process.

9.4 Implementing own error estimators

Suppose that we are given a subroutine calls®olver for solving the Poisson equation, and we would

like to enhance the code by implementing an a posteriori émdbcator for adaptive mesh refinement. The

first thing to do is to take the modukdaptive in use, an define the local error indicators as functions in
an intefrace block. The beginning of the subroutine showd like the following:

SUBROUTINE MySolver( Model,Solver,Timestep, TransientS imulation )
USE DefUtils
USE Adaptive

INTERFACE
FUNCTION InsideResidual( Model, Element, Mesh, &
Quant, Perm, Fnorm ) RESULT( Indicator )
USE Types
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TYPE(Element_t), POINTER :: Element
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator, Fnorm
INTEGER :: Perm()

END FUNCTION InsideResidual

FUNCTION EdgeResidual( Model, Edge, Mesh, &
Quant, Perm ) RESULT( Indicator )

USE Types
TYPE(Element_t), POINTER :: Edge
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator
INTEGER :: Perm()

END FUNCTION EdgeResidual

FUNCTION BoundaryResidual( Model, Edge, Mesh, &
Quant, Perm, Gnorm ) RESULT( Indicator )

USE Types
TYPE(Element_t), POINTER :: Edge
TYPE(Model_t) :: Model
TYPE(Mesh_t), POINTER :: Mesh
REAL(KIND=dp) :: Quant(:), Indicator, Gnorm
INTEGER :: Perm()

END FUNCTION BoundaryResidual

END INTERFACE

After these fixed declarations we may proceed normally byndedithe local variables, allocate memory
for local tables, integrate the stiffness matrix, set bargatonditions, and solve the problem. Error esti-
mation and adaptive mesh refinements are then performedlngdhe subroutindRefineMesh , which
should appear in the code right after the functidefaultSolve

Norm = DefaultSolve()

IF ( ListGetLogical( Solver % Values, 'Adaptive Mesh Refine ment’ ) ) &
CALL RefineMesh( Model, Solver, Potential, Permutation, &
InsideResidual, EdgeResidual, BoundaryResidual )

The functiondnsideResidual , EdgeResidual andBoundaryResidual  defined in the inter-
face block should finally be containedilySolve , and return the values of the error indicators described
in the previous section.

As an example, suppose that we are using linear trianglegrahiedra for solving the Poisson equation.
In this case it hold¥ - ¢, = 0 on each element, and the contribution of the firtst term in (7.1) is simply

InsideResidual = hp /|f|2 dQ (9.13)
\ /&

The function that computes the value of the inside redisoalctbe written as follows.

FUNCTION InsideResidual( Model, Element, Mesh, &
Quant, Perm, Fnorm ) RESULT( Indicator )
IMPLICIT NONE
TYPE(Model_t) :: Model
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INTEGER :: Perm(:)

REAL(KIND=dp) :: Quant(:), Indicator, Fnorm
TYPE( Mesh_t ), POINTER i Mesh
TYPE( Element_t ), POINTER :: Element

TYPE(GaussintegrationPoints_t), TARGET :: IP

TYPE(ValueList_t), POINTER :: BodyForce

REAL(KIND=dp) :: f, hK, det], Basis(MAX_NODES), &
dBasisdx(MAX_NODES,3), ddBasisddx(MAX_NODES,3,3), &
Source(MAX_NODES)

LOGICAL :: stat

INTEGER :: n

Indicator = 0.0d0
Fnorm = 0.0d0
hK = element % hK

BodyForce => GetBodyForce( Element )
Source = GetReal( Element, 'Source’ )

IP = GaussPoints( Element )
DOn=1 IP % n
stat = Elementinfo( Element, Nodes, IP % u(n), IP % v(n), &
IP % w(n), det], Basis, dBasisdx, ddBasisddx, .FALSE. )
f = SUM( Source =* Basis )
Fnorm = Fnorm + f = 2 » detd % IP % s(n)
Indicator = Indicator + f x» 2 x det] * IP % s(n)
END DO

Fnorm = SQRT( Fnorm )
Indicator = hK * SQRT( Indicator )

END FUNCTION Inside Residual

For the boundary and edge residuals refer to the exaPgilsson.f90  in the tutorial manual of Elmer.
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Chapter 10

Parallel runs

10.1 Introduction

In times of even simple desktop PCs containing multiple CBtUs least multiple cores, parallel computing
is a necessity to exploit the complete potential of thoshitgctures. As on multi-core architectures multi-
threading (e.g., OpenMP) would be a feasible concept, Elrtiézes the well established Message Passing
Interface standard for inter-process communication. @pjsroach makes it possible to run Elmer on both,
multi-core as well as multi processor environments.

10.1.1 Parallel Implementation in EImer

The general concept of a parallel run within Elmer is displayn Fig. 10.1 Elmer uses domain decompo-

unpartitioned partitioned mesh
mesh

=

domain
decomposition

parallel combined result
solution

1@-’

unification of
result

Figure 10.1: The principle steps to be taken for a parallelaLEImer
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sition for distributing the load to multiple processes tha being run on either different cores or CPUs. To
that end, the initial mesh has to be split into parts that A wespect to the applied models — lead to similar
loads of the processdisThis will be discussed in sectidr0.2

The solver stage mostly will demand from serial runs difigrnumerical techniques, as solution strate-
gies have to take care of the by the domain boundaries linpitsdibilities of memory access. In general,
convergence of linear systems are more difficult to achi@rapgared to serial runs. These issues will be
addressed in sectidr0.3.1

Finally, as also the output of the parallel runs is split idtonains, the post-processing usually demands
an additional step of unifying the split results. Alterwaty, new visualization software is capable to do that
either on the fly or to also visualize the results using migtijprocesses. Especially the latter method in-
evitably will gain importance with the increasing size ofdeds that cannot be handled on a single CPU/core
due to memory and computational constraints. Conceptssifprmcessing parallel results are discussed in
section10.4

10.2 Preprocessing of Parallel Runs

In order to utilize the decomposition, the mesh has to be isipdi the same amount of partitions), as there
are different processes within the parallel computatidme plain and easy way is to start from a mesh for a
serial run. The typical structure of a single domain meshlokase is the following:

meshdirectoryname|
|-mesh.header
|-mesh.nodes
|-mesh.elements
|-mesh.boundary

The mesh consists of a header file, containing the basicrivgtion (e.g., numbers of nodes and elements),
a file containing all nodes and two further files defining thékband boundary-elements.

The parallel mesh consisting of 2 partitions the is writterder the same directory within the sub-
directorypatrtitioning.2

meshdirectoryname|

|-mesh.header

[-mesh.nodes

[-mesh.elments

|-mesh.boundary

|-partitioning.2|
|-part.1.header
|-part.1.nodes
|-part.1.elements
|-part.1.boundary
|-part.1.shared
|-part.2.header
|-part.2.nodes
|-part.2.elements
|-part.2.boundary
|-part.2.shared

These files basically reflect the structure of a single doma@sh on the partition level. Additionally, a
file namespart. N.shared (with N being the partition number) is introduced. It contains —h&srtame
suggests — information on between domains shared nodes.

currently Elmer is not able to perform internal load balaggi
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10.2.1 Partitioning with EImerGrid

Provided, a single domain mesh exists, the correspondimgi&rid command to create a with respect to
the x-direction split mesh (in our cagex 1 x 1 = 2 partitions) would read as

ElmerGrid 2 2 meshdirectoryname -partition 2 1 1 0

There are different methods of partitioning built into Ei@eid. they are summarized in tabl®.1

option purpose parameters
-partition N, N, N, F partitionwith respecttodi- N,,,,. ...number of par-
rections titions in x/y/z-direction,

F=0...element-wise par-
titioning, 1 ...node-wise

partitioning
-partorder Ng Ny Ny (optional in additional to n,/,,,. ...components of
previous) direction of or- normal vector of ordering
dering
-metis N M uses metis library for parti- N ...number of partitions,
tioning M...method

M=0... PartMeshNodal
M=1... PartMeshDual

M=2 ... PartGraphRecursive
M=3... PartGraphKway
M=4 ... PartGraphVKway

Table 10.1: Partition methods for ElmerGrid

Depending on what partitioning method was used, additipaehmeters may be used for adaption of
mesh specifications Those parameters and their purposistactin10.2
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option purpose parameters
-halo create halo for the parti-
tioning
-indirect create indirect connections

-periodic F, F, F,

-partoptim

-partbw

-parthypre

in the partitioning

declare the periodic coor- £, , . = 1 ...periodic, 0
dinate directions for paral- ... not periodic
lel meshes and sets peri-

odic points into same par-

titions

apply aggressive optimiza-

tion to node sharing

minimize the bandwidth

of partition-partition cou-

plings

hypre type numbering

(number the nodes contin-

uously partition-wise)

Table 10.2: Additional mesh generation options for EimédGr

Figure 10.2shows the different distribution of partitions obtainediwiwo different methods. In gen-

Figure 10.2: Distribution of four partitions using the apts-partition 2 2 1

(left) and-metis

4 1 (right). It comes clear that the partitioning to the left t@ins more partition-partition boundaries and
consequently will perform worse in a parallel run

eral, the user should utilize thmetis options, if more complex geometries (like in Fig0.2 are to be
decomposed. This ensures that the number of shared nodesoasequently also the amount of inter-
process communication during the parallel computationirsnmmzed. More simple objects, especially those

using regular meshes, can be split according to the axigubmpartition

compromise on communication speed.

option without having to
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Halo Elements

One of the additional options displayed in Tdlf..2are so called halo elements. As displayed in Hig.3
halo-elements are additional elements that do not belotlgetgartition (i.e., they are not contributing in
the domain-wise solution procedure), but rather are raplaf the neighbor elements of adjoining partitions.
Thus, in a parallel run, the values of variables as well agdmnetry of the whole element are at disposition
withing the domain partition. These may be needed by a spdeffi method, such as the Discontinuous

4

Figure 10.3: The concept of halo-elements. Each partit@ntains information on the neighbor elements
along the domain boundary (red) of the adjoining partititmss leading to a redundant stripe of elements
(light-gray) that is shared between the domains

Galerkin method or by specific solvers/functions that nedditsonal geometric information from the other
domain (e.g., element-averaged surface normals).

10.3 Parallel Computations in Elmer

As mentioned before, Elmer utilizes Message Passing haer{MPI) for inter-process communication
while doing a parallel computation. To that end, a speciaalfel executable that is linked to a MPI li-
brary (the minimum requirement). The compilation processthe MPI version is shortly explained in
chapterll of this guide. The executable file of the parallel version ph& has a to the serial call different
name,ElmerSolver_mpi . Typically it is executed as an argument to an additiondltbalt is specific
to the parallel (MPI) environment of the platform. For insta, in a typical MPI installation (OpenMPI,
MPICH) the command

mpirun -np 4 ElmerSolver_mpi

will run a four-process parallel EImer run. The typical smeoutput upon launchinglmerSolver_mpi
indicating the number of processes is

ELMER SOLVER (v 5.5.0) STARTED AT: 2009/09/09 10:28:28
ELMER SOLVER (v 5.5.0) STARTED AT: 2009/09/09 10:28:28
ELMER SOLVER (v 5.5.0) STARTED AT: 2009/09/09 10:28:28
ELMER SOLVER (v 5.5.0) STARTED AT: 2009/09/09 10:28:28
ParCommlnit: Initialize #PEs: 4
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MAIN:
MAIN: =
MAIN. ELMER SOLVER STARTING
MAIN: Library version: 5.5.0 (Rev: 4195)

MAIN: Running in parallel using 4 tasks.

MAIN: HYPRE library linked in.

MAIN:  MUMPS library linked in.

MAIN: =
MAIN:
MAIN:

Itis — unlike in the serial version of EImer — not possible xplkcitly add the Solver Input File (SIF, suffix
* .sif ) asanargumentto the calling command. The user rather lpas\vale a file calle€ELMERSOLVER_STARTINFO
containing the file name. Additionally, the in the SIF deethmesh-directory has to contain a mesh with —
in this specific case — four partitions.

10.3.1 Numerical Strategies in Parallel

The concept of domain decomposition means that EImerSaven onN > 1 separate parts of a domain
that are interlinked at the boundaries. If no special sal\(see later in this section) are utilized, this in-
herently means that iterative methods have to be used i twdrechieve convergence for the linear(ized)
system solution procedure. The selection of availablatiiez methods, which all fall within Krylov sub-
space methods, is to be found in sectikih These methods in general have similar convergence cohpare
to a single process run. The biggest difference introdugedbionain decomposition is, that preconditioning
strategies are altered. To give an example: As only apptidti¢ local matrix, the LU factorization of a
parallel run in comparison to a serial drops the gray zonég#ted in Fig.10.4 This not necessarily will,

Domain 1
) !
Y B
Domain 2
4 A
Y f
Domain 3

Figure 10.4: Difference of ILU factorization between sedad domain decomposition runs. If the factor-
ization is applied only locally within the domain, contriilmns from the light-gray zones are not accounted
for in the latter

but can negatively affect the convergence of the iteratie¢hod.
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Hypre

Hypre is a library for solving large, sparse linear systerhequations on massively parallel computers.
Hypre was developed at the Center for Applied Scientific Cotimg (CASC) at Lawrence Livermore Na-
tional Laboratory. Hypre is distributed under the GNU LesSeneral Public License and thus not included
in the Elmer distribution. It rather has to be downloadednpied and linked together with the Elmer
sources.

The principle keyword for utilizing Hypre is given in the sef section

Linear System Use Hypre Logical
if settoTrue , Hypre will be used to solve the linear system.

In Elmer, the only Krylov sub-space method being impleméig¢he Conjugate Gradient Stabilized (BiCGStab)
method, which is taken into use by

Linear System Solver = "lterative"
Linear System lIterative Method = "BiCGStab"

In combination with the BICGStab method, the following pyeditioner can be taken into use If ILUn
method for preconditioning, the following settings havétoset in the solver section (here with ILU fill-in
level 1):

Linear System Preconditioning String "ILU  N"
with N being the fill-in level (just in the built-in EImer preconiiber). The only significant difference
to Elmer’s built-in ILU preconditioner is, that in case of pie, the missing parts (illustrated in Fig.
10.4) are now being passed from one domain to the other. In othedsythe precodnitioner should
behave exactly as if it would be applied in a serial, singlmdim run. This can improve convergence,
but comes at the cost of increased inter-processor commatimmic

Linear System Preconditioning String "ParaSails"
Parasalils is a sparse approximate inverse preconditibisgurieconditioner for sparse matrix systems.
It has the following additional parameters

ParaSails Threshold is aReal value that determines the typical value for matrix entries
being dropped. Its suggested range for direct input (p@sgtign) is from 0.0 to 0.1, with lower
values demanding higher accuracy and consequently congplirine/memory. Alternatively, if
negative values are entered, they are interpreted as tttefmaf nonzero elements that are being
dropped (e.g., -0.9 leads to 90/

ParaSails Filter is aReal value that determines the typical value for matrix entries
in the in the computed approximate inverse that are droppedsuggested range for direct
input (positive sign) is from 0.0 to 0.05. Alternatively,nkgative values are entered, they are
interpreted as the fraction of nonzero elements that arggtshiopped (see earlier item).

ParaSails Maxlevel is aninteger  value that determines the accuracy of the precondi-
tioner. Usually a value of 0 or 1 is within the applicable fram

ParaSails Symmetry is aninteger value that determines the nature of the original ma-
trix. the following settings are to be found from the Hyprenual:

0 non-symmetric and/or indefinite problem, non-symmetracpnditioner

1 Semi Positive Definite (SPD) problem, SPD (factored) pneldt@ioner

2 non-symmetric definite problem, SPD (factored) precaoodér

A typical section for the Navier-Stokes solver being solwath BiCGStab and ParaSails could look
as follows

Solver 1
Equation = "Navier-Stokes"
Optimize Bandwidth = Logical True
Linear System Solver = "lterative"
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Linear System lterative Method = "BiCGStab"
Linear System Max lterations = 500
Linear System Convergence Tolerance = 1.0E-06
Linear System Abort Not Converged = True
Linear System Preconditioning = "ILU1"
Linear System Residual Output = 1
Linear System Use Hypre = Logical True
Linear System Preconditioning = "ParaSails"
ParaSails Threshold = Real -0.95
ParaSails Filter = Real -0.95
ParaSails Maxlevel = In